Marc Ferré
  • E-mail :[email]
  • Phone : +33 2 44 68 84 04
  • Location : Angers, France
Last update 2017-01-23 11:37:38.585

Marc Ferré MEng French Grande Ecole, PhD Bioinformatics

Course and current status

Marc Ferré graduated in 2002 from a French Grande Ecole of Engineering (ESEO) and in December 2009 a PhD in Bioinformatics. Until August 2014, he was employed by the University Hospital of Angers (France) as bioinformatician through the formation of a national network coordinated by the French Department of Health and Social Affairs (genetic study of neuromuscular and sensory pathologies and mental retardation).

He is currently Associate Professor in Molecular Biology and Bioinformatics at the Angers Medical School.

He is also a staff-member to the research team Mitolab (mitolab.eu) of the UMR CNRS 6015/INSERM 1083 — CNRS, The Centre National de la Recherche Scientifique (National Center for Scientific Research), is a government-funded research organization, under the administrative authority of France's Ministry of Research; INSERM, the Institut national de la santé et de la recherche médicale (French National Institute of Health and Medical Research), is a public scientific and technological institute which operates under the joint authority of the French Ministry of Health and French Ministry of Research.

Scientific summary

Research activity of Dr Ferré has been conducted in the field of mitochondrial diseases.

He began is career by studying in silico the human mitochondrial proteome and developing a bioinformatics research strategy to identify new mitochondrial proteins on the basis of their prokaryotic origin. In parallel to this overall strategy of screening, he focused on the study of the Opa1 protein, one of the proteins associated with autosomal dominant optic atrophy, which is involved in mitochondrial fusion. Opa1, a dynamin GTPase, is involved in the remodeling of the mitochondrial inner membrane, apoptosis, maintenance of mitochondrial DNA, and energy metabolism. He finally developed an international database listing the variations of Opa1 so as to characterize its mutational spectrum. This tool was used as a complement to a multicentric clinical study involving nearly a thousand patients with optic neuropathy. His work has led to the development of novel bioinformatics tools that should contribute to a better understanding of mitochondrial pathophysiology.

He is currently focused on three areas: 1) obtaining mitochondrial genetic information by developing the 3rd generation Nanopore sequencing, an innovative technique for sequencing mitochondrial DNA in which double-stranded DNA is read directly without DNA amplification or incorporation of nucleotides; 2) the establishment of biomedical databases, as a member of the Human Variome Project Gene Disease Specific Database Advisory Council since 2012; 3) Big data, an area of research which follows the need to analyze large amounts of data generated by the previous two axes and open data policy.

Image d’exemple